*kiku@affrc.go.jp

Utilization of Porcine Testicular Tissues after Cryopreservation and Grafting into Nude Mice

Kazuhiro KIKUCHI^{1*}, Michiko NAKAI¹, Naomi KASHIWAZAKI², Hiroyuki KANEKO¹

 ¹ Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
 ² Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan

Status of the procedures used for sperm freezing

Piglets obtained

Gene bank

Genebank Project, MAFF/NIAS/NARO

•Livestock and poultry sperm are cryopreserved in the Genebank project of NARO (Agrobiological Resource Genebank).

•In pigs, the fertilizing ability of thawed sperm differs between individuals and lots, and some of them have poor motility and cannot be fertilized or conceived even if artificial insemination or in vitro fertilization is performed. = difference in cryotolleance

•Establishment of fertilization and production of piglets by intra-cytoplasmic sperm injection (ICSI) is expected as a necessary and indispensable technology for the maintenance and utilization of genetic resources.

Motility of frozen-thawed sperm

showing 0% after thawing were previously removed. (MAFF & NIAS Gene Bank, 1990-2002)

Status of the procedures used for sperm freezing

Piglets obtained

Collection of epididymal spermatozoa

Sperm from cauda epididymis show better freeze-tolerance than ejaculated sperm.

Table 1. Sperm motility (%) in fresh and frozen-thawed ejaculated semen and in epididymal semen in 3 boars

	Boar 1		Boar 2		Boar 3	
	₹ (%)	±SEM	₮ (%)	±SEM	₮ (%)	±SEM
Unprocessed semen	84.2ad	2.0	74.2ae	5.9	77.7ae	5.2
Fresh semen prepared for IVF	74.2bd	4.9	74.2ad	3.8	80.8 ae	4.9
Frozen-thawed ejaculated semen	50.0Cd	11.0	28.2 ^{be}	7.5	42.5bd	9.9
Frozen-thawed epididymal semen	76.7bd	2.6	69.2ad	7.4	70.8 ad	6.7

a-c Values with different superscripts within a column differ significantly between treatments (P< 0.05).</p>

d-e Values with different superscripts within a row differ significantly between boars (P< 0.05).

 Table 2. Percentage of pronucleus development of in vivo matured porcine oocytes

 8 hours after in vitro fertilization with 3 different types of semen

		and a second second	IVF	with		
	Fresh semen		Frozen-thawed ejaculated semen		Frozen-thawed epididymal semen	
<u></u>	X (%)	±SEM	₮ (%)	±SEM	₮ (%)	±SEM
No. of oocytes	73		44		94	
Germinal vesicle	5.5	2.9	4.4	2.9	7.2	2.3
Metaphase II	28.9 ^b	6.8	36.7b	8.2	9.5 ^C	2.4
Degenerated	18.2	4.6	12.8	5.4	10.5	4.2
Penetrated a	14.1	5.2	11.5	6.9	9.1	2.3
1 pronucleus	24.4	5.6	20.1	5.4	18.4	3.1
2 pronuclei	8.9	4.8	2.2 ^b	2.2	23.0 ^c	4.7
> 2 pronuclei	Op		12.3bc	7.5	22.3 ^C	5.3

ANOVA: Values with different superscripts within a row differ significantly ($P \le 0.05$). ^a Expanded sperm head and corresponding tail in the cytoplasm, no visible pronuclei.

Status of the procedures used to cryopreserve porcine gonadal tissue, gametes and embryos

Requirement for xenografting

1. Immuno-deficent animals were purchased commercially

2. In vitro embryo production (IVM/IVF/IVC) is established.

3. Techniques of embryo transfer is also established.

2-1. Cryopreservation of Testicular tissue

Utilization of testicular tissues

Xenografts (Day 125)

The seminiferous cords contain only gonocytes and spermatogonia.

Kikuchi et al., Reprod Fertil Dev 2006:18: 247

Generation of sperm cells

Percentage of seminiferous cord or tubule crosssection after xenografting. Histological sections of testicular tissues grafted into mice were prepared 0–210 days after xenografting. Those from adult boars were also prepared.

Sperm cells from the xenografted tissue

Well-developed xenografts; 27 mice Sperm cells obtained; 19 mice (70.4%)				 5 μm		0
						V
						0.
Arter mincing				matozoon di for ICSI) w	Spermatozoon rith cytoplasmic droplet	Immature sperm cells
Morphologically normal (w/ head				eace & tail)	Abnormal (immature)	Total
		+	_	total		
	Cyroplasmic droplet	280 (98.2%)	5 (1.8%)	285 (89.3%)	34 (10.7%)	319
	Motility	134 (47.0%)	151 (53.0%)			

Nakai et al., Theriogenology 2009;72:2-913

In vitro development after ICSI

Embryo transfer experiment

<u>100 µ</u>m

Nakai et al., Theriogenology 2009;72:2-914

Piglet production

Recipient #8 $\mathbf{O}^{\mathbf{T}}4+\mathbf{Q}1$

Recipient #14

Nakai et al., Reproduction 2010;139: 331–315

Cryopreservation of testicular tissue

Piglet production

Table. Transfer to synchronized recipients of porcine oocytes injected with sperm from cryopreserved xenografts.

Immersion-time group	Recipient No.	Preservation of testicular tissue before grafting (days)	Sperm collection (days postgrafting)	No. of fertilized oocytes transferred	Pregnancy	No. of piglets born
10-min	1 2 3 4	140 188 585 587	231 230 318 234	74 70 100 101	+ - -	ð ";1, Q ;1
20-min	1 2 3 4	188 188 578 587	230 254 291 248	59 89 79 97	- + -	♂ ;2 ♀;3

Kaneko et al., PLoS One. 2013;8: e70989. 17

Conclusion/ Testicular tissue cryopreservation

Conclusion/ Testicular tissue cryopreservation

Xenografting offers a possible way for the effective utilization of vitrified testicular tissue fragments.

Collaborators

NARO

Hiroyuki KANEKO, Tamas SOMFAI, Michiko NAKAI, Nguyen Thi MEN

Azabu University Naomi Kashiwazaki